Проснувшись однажды утром после беспокойного сна, Грегор Замза обнаружил, что он у себя в постели превратился в страшное насекомое.

новке разрабатывают основную схему и общую конструкцию агрегата (иногда несколько вариантов). На основании анализа эскизной компоновки составляют рабочую компоновку, уточняющую конструкцию агрегата и служащую исходным материалом для дальнейшего проектирования.

При компоновании важно уметь выделить главное из второстепенного и установить правильную последовательность разработки конструкции. Попытка скомпоновать одновременно все элементы конструкции является ошибкой, которая свойственна начинающим конструкторам. Получив задание, определяющее целевое назначение и параметры проектируемого агрегата, конструктор нередко начинает сразу вырисовывать конструкцию в целом во всех ее подробностях, с полным изображением конструктивных элементов, придавая компоновке такой вид, который должен иметь лишь сборочный чертеж конструкции в техническом или рабочем проекте. Конструировать так — значит почти наверняка обрекать конструкцию на нерациональность. Получается механическое нанизывание конструктивных элементов и узлов, расположенных заведомо нецелесообразно.

Компоновку следует начинать с решения главных вопросов — выбора рациональных кинематической и силовой схем, правильных размеров и формы деталей, определения наиболее целесообразного взаимного их расположения. При компоновании надо идти от общего к частному, а не наоборот. Выяснение подробностей конструкции на данном этапе не

3. Схемы инверсии типовых узлов

Схемы

Сравнительная характеристика схем

В схеме I рычаг 1 приводит в действие тягу 2 через ось 3, установленную в вилке тяги. В схеме II ось установлена в вилке рычага. Результат инверсии — устранение поперечных сил на тягу. В конструкции по схеме II затруднительна обработка проушины тяги

В схеме I боек коромысла 4 плоский, тарелка толкателя 5 — сферическая, в схеме II — наоборот. Инверсия устраняет поперечные нагрузки на толкатель. Боек можно выполнить цилиндрическим, что обеспечивает линейный контакт

Привод коромысла

В схеме I тяга выполнена со сферическим наконечником б, в схеме II сферическим выполнен боек 7 коромысла. Инверсия улучшает смазку соединения (масло, находящееся в полости привода, скапливается в чаше тяги)

Ниппельное соединение

В схеме I ниппель 8 затягивается внутренней гайкой 9, в схеме II — наружной 10. Осевые габариты в схеме II меньше, а радиальные несколько больше

В схеме I ниппель 11 выполнен с внутренним конусом, в схеме II — с наружным. Осевые габариты в схеме II меньше

сферическое соединение трубопроводов

Замена полной сферы (схема I) двумя концентричными полусферами (схема II) значительно сокращает осевые габариты. Изготовление узла, однако, усложняется

Схема II выгоднее схемы I по условиям смазывания

Крепление шпильки

Схема II повышает прочность резьбового соединения (податливость бобышки у начальных витков способствует более равномерному распределению нагрузки по виткам)

Крепление турбинной лопатки

В схеме 1 лопатка 12 крепится вильчатой ножкой на Т-образном кольцевом шипе ротора 13. В схеме II — Т-образной ножной в кольцевом пазу ротора. Схема II уменьшает массу, увеличивает жесткость и упрощает изготовление лопатки

Переставной винт

В схеме I винт с коротким резьбовым поясом 14 перемещается в корпусе с резьбой, длина которой равна ходу винта. В схеме II резьба нарезана по всей длине винта; корпус имеет короткий резьбовой пояс 15. Облегчается изготовление (нарезание длинной резьбы в отверстии затруднительно). При одинаковом диаметре d резьбы прочность винта в схеме II выше

Установка шатуна в вилке

В схеме I ось 16 закреплена в шатуне и вращается в подшипниках вилки, в схеме II — наоборот Схема II улучшает условия работы подшипника вследствие увеличения его жесткости и более благоприятного отношения длины к диаметру

Направляющая шпонка

В схеме I направляющая шпонка 17 установлена на валу и имеет длину, равную ходу ступицы 18. В схеме II шпонка 19 установлена в ступице и перемещается в продольном пазу вала. Схема облегчает изготовление узла и улучшает направление

Переставной механизм

В схеме 1 приводная головка 20 перемещается по неподвижной штанге 21. В схеме II головка закреплена на штанге, которая перемещается в направляющих втулках 22 корпуса. Точность направления значительно повышается, поперечные силы на головке и переставная сила уменьшаются

В схеме I шток 23 приводится в поступательно-возвратное движение двумя роликами 24, обкатывающими дисковый копир 25, а в схеме II — одним роликом 26, перемещающимся между двумя копирами 27. Схема II резко сокращает осевые размеры узла уменьшаются

Узел пружинной амортизации рычага

В схеме I головка рычага воздействует иа две пружины, опертые в корпусе. В схеме II рычаг сделан вильчатым и воздействует на одну пружину, работающую в обоих направлениях. Схема сокращает осевые размеры узлауменьшаются

Замена пружины растяжения (схема I) пружиной сжатия с реверсом (схема II) повышает надежность и договечность узла (пружины сжатия прочнее пружин растяжения). Конструкция по схеме II, однако, значительно сложнее, чем по схеме I

Перепускной клапан

В схеме I клапан направляется стержнем 28, запрессованным в копусе, а в схеме II — хвостовиком 29, скользящим в отверстии корпуса. Точность направления в схеме II значительно выше (направляющее отверстие и седло обрабатываются с одного установа)

В схеме I фиксатор расположен в ступенчатом отверстии и направляется хвостовиком и головкой; в схеме II фиксатор выполнен в виде стакана, внутри которого размещена пружина. Схема II технологичнее (сквозное отверстие), конструкция, однако, сложнее

Шлицевая муфта

В схеме I переходник 30 имеет наружные шлицы, а приводные диски — внутренние. В схеме II переходник 31 выполнен с внутренними шлицами, а диски с наружными. Схема II выгоднее по осевым размерам и технологичности (внутренние шлицы обрабатывают напроход)

Промежуточное зубчатое колесо

Установка шестерни на оси (схема II) улучшает условия работы подшипника вследствие увеличения его жесткости. В схеме II ось нагружена силой постоянного направления; в схеме I нагрузка на вал циклическая (круговой изгиб)

Промежуточное зубчатое колесо 2

Установка шестерни на подшипниках качения на оси (схема II) уменьшает долговечность подшипников (вращаются наружные кольца подшипников, тогда как на схеме I — внутренние). Нагрузка на наружные кольца в схеме I — постоянного направления. Схема II иногда целесообразна по габаритным условиям (например, консольная установка шестерни)

Гидравлический сервоцилиндр

В схеме I поршень 32 перемешается в неподвижном цилиндре 33, в схеме II неподвижен поршень 34; по нему перемещается цилиндр 35. В схеме II возможен привод от любой точки по высоте цилиндра. Маслораспределительная система и конструкция узла сложнее, чем в схеме I

только бесполезно, но и вредно, так как отвлекает внимание конструктора от основных задач компонования и сбивает логический ход разработки конструкции.

Другое основное правило компонования — разработка вариантов, углубленный их анализ и выбор наиболее рационального. Ошибочно, если конструктор сразу задается направлением конструирования, выбирая или первый пришедший в голову тип конструкции или принимая за образец шаблонную конструкцию. Самое опасное на данном этапе проектирования поддаться психологической инерции и оказаться во власти стереотипов. Вначале необходимо продумать все возможные решения и выбрать из них оптимальное для данных условий. Это требует труда и дается не сразу, а иногда в результате длительных поисков.

Полная разработка вариантов необязательна. Обычно достаточно карандашных набросков от руки, чтобы получить представление о перспективности варианта и решить вопрос о целесообразности продолжения работы над ним.

Иногда конструктор даже не может объяснить, почему он избирает одно направление конструирования и отвергает другое, ограничиваясь лаконичным «не нравится». У одного конструктора за этой, на первый взгляд вкусовой мотивировкой, на самом деле скрывается безошибочное предвидение конструктивных, технологических, эксплуатационных и других осложнений, которые несет с собой отвергаемое направление.

В процессе компонования необходимо производить расчеты, хотя бы ориентировочные и приближенные. Основные детали конструкции должны быть рассчитаны на прочность и жесткость. Доверяться интуиции при выборе размеров и форм деталей нельзя. Правда, есть опытные конструкторы, которые почти безошибочно устанавливают размеры и сечения, обеспечивающие принятый в данной отрасли машиностроения уровень напряжений. Но это достоинство сомнительное. Копируя шаблонные формы и придерживаясь традиционного уровня напряжений, нельзя создать прогрессивные конструкции.

Неправильно всецело полагаться и на расчет. Во-первых, существующие методы расчета на прочность не учитывают ряда факторов, определяющих работоспособность конструкции. Во-вторых, есть детали, не поддающиеся расчету (например, сложные корпусные детали)1. В-третьих, необходимые размеры деталей зависят не только от прочности, но и от других факторов. Конструкция литых деталей определяется в первую очередь требованиями литейной технологии. Для механически обрабатываемых деталей следует учитывать сопро

тивляемость силам резания и придавать им необходимую жесткость. Термически обрабатываемые детали должны быть достаточно массивными во избежание коробления. Размеры деталей управления нужно выбирать с учетом удобства манипулирования.

Необходимое условие правильного конструирования — постоянно иметь в виду вопросы изготовления и с самого начала придавать деталям технологически целесообразные формы. Опытный конструктор, компонуя деталь, сразу делает ее технологичной; начинающий должен постоянно обращаться к консультации технологов.

Компоновку необходимо вести на основе нормальных размеров (диаметры посадочных поверхностей, размеры шпоночных и шлицевых соединений, диаметры резьб и т. д.). Особенно это важно при компоновании узлов с несколькими концентричными посадочными поверхностями, а также ступенчатых деталей, форма которых в значительной степени зависит от градации диаметров.

Одновременно следует добиваться максимальной унификации нормальных элементов. Элементы, неизбежные по конструкции главных деталей и узлов, рекомендуется использовать в остальных частях конструкции.

При компоновании должны быть учтены все условия, определяющие работоспособность агрегата, разработаны системы смазки, охлаждения, сборки-разборки, крепления агрегата и присоединения к нему смежных деталей (приводных валов, коммуникаций, электропроводки); предусмотрены условия удобного обслуживания, осмотра и регулирования механизмов; выбраны материалы для основных деталей; продуманы способы повышения долговечности, увеличения износостойкости трущихся соединений, способы защиты от коррозии; исследованы возможности форсирования агрегата и определены его границы.

Не всегда компонование идет гладко. В процессе проектирования часто обнаруживают незамеченные в первоначальных прикидках недостатки, для устранения которых приходится возвращаться к ранее забракованным схемам или разрабатывать новые. Отдельные узлы не всегда получаются с первых попыток. Это не должно смущать конструктора. Приходится создавать «временные» конструкции и доводить их до необходимого . конструктивного уровня в процессе дальнейшей работы. В таких случаях полезно по итальянской поговорке «dare al tempo il tempo» («дать время времени»), т. е. сделать передышку, после которой в результате подсознательной работы мышления нередко возникают удачные решения, выводящие конструктора из тупика. После паузы

конструктор смотрит на чертеж по-иному и видит недостатки, которые были допущены в период развития основной идеи конструкции.

Порой конструктор невольно утрачивает объективность, перестает видеть недостатки понравившегося ему варианта и возможности других вариантов. В таких случаях как нельзя более к месту оказывается беспристрастное мнение посторонних людей, указание старших, совет товарищей по работе, даже придирчивая критика. Более того, чем острее критика, тем большую пользу извлекает из нее конструктор.

На всех стадиях компонования следует прибегать к конструкции производственников и эксплуатационников. Чем шире поставлено обсуждение компоновки и чем внимательнее конструктор прислушивается к полезным указаниям, тем лучше становится компоновка и совершеннее получается конструкция.

Не следует жалеть времени и сил на проработку проекта. Стоимость проектных работ составляет незначительную долю стоимости выпуска машин (за исключением машин единичного и мелкосерийного производства). Более глубокая проработка конструкции в конечном счете дает выигрыш в стоимости, сроках изготовления и доводки, качестве и экономической эффективности машины.

Техника компонования. Компонование лучше всего вести в масштабе 1:1, если это допускают габаритные размеры проектируемого объекта. При этом легче выбрать нужные размеры и сечения деталей, составить представление о соразмерности частей конструкции, прочности и жесткости деталей и конструкции в целом. Вместе с тем такой масштаб избавляет от необходимости нанесения большого числа размеров и облегчает последующие процессы проектирования в частности, деталировку. Размеры деталей в этом случае можно брать непосредственно с чертежа.

Вычерчивание в уменьшенном масштабе, особенно при сокращениях, превышающих 1:2, сильно затрудняет процесс компонования, искажая пропорции и лишая чертеж наглядности. Если размеры объекта не позволяют применить масштаб 1:1, то отдельные сборочные единицы и агрегаты объекта следует во всяком случае компоновать в натуральную величину.

Компоновку простейших объектов можно разрабатывать в одной проекции, в которой конструкция выясняется наиболее полно. Формы конструкции в поперечном направлении восполняются пространственным воображением.

При компоновке более сложных объектов

Рис.13 Упрощенное изображение типовых элементов

указанный способ может вызвать существенные ошибки; в таких случаях обязательна разработка во всех необходимых видах, разрезах и сечениях.

Техника выполнения компоновочных чертежей представляет собой процесс непрерывных поисков, проб, прикидок, разработки вариантов, их сопоставления и отбраковки негодных. Чертить следует со слабым нажимом карандаша, потому что при компоновании переделки следуют одна за другой, здесь работает больше резинка, чем карандаш. Сечения можно не штриховать, а если и штриховать, то только от руки. Не следует тратить время. на вырисовывание подробностей. Типовые детали и узлы (крепежные детали, уплотнения, пружины, подшипники качения) целесообразно изображать упрощенно (рис. 13).

Обводку чертежа, штриховку, раскрытие условностей изображения и подрисовывание мелких деталей относят на окончательные стадии компонования, при подготовке компоновочного чертежа к обсуждению.

Существует школа компонования от руки. Конструкцию вырисовывают карандашом на миллиметровой бумаге. Автор неизменно придерживается этого способа и считает, что такое компонование имеет большие преимущества по производительности, гибкости, легкости внесения поправок. Оно почти полностью исключает возможности ошибок в .увязочных размерах и обеспечивает легкое чтение всех размеров деталей. При этом способе особенно хорошо удается придавать деталям плавные очертания, характерные для современного конструирования.

Для конструктора, обладающего рисовальными способностями, это наилучший способ компонования. Есть конструкторы, из-под рук которых в течение нескольких часов выходят выполненные этим методом вполне законченные и отработанные компоновки, которые можно передавать на деталировку.